A Taz1- and Microtubule-Dependent Regulatory Relationship between Telomere and Centromere Positions in Bouquet Formation Secures Proper Meiotic Divisions

نویسندگان

  • Kazuhiro Katsumata
  • Ami Hirayasu
  • Junpei Miyoshi
  • Eriko Nishi
  • Kento Ichikawa
  • Kazuki Tateho
  • Airi Wakuda
  • Hirotada Matsuhara
  • Ayumu Yamamoto
چکیده

During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased ploidy and KAR3 and SIR3 disruption alter the dynamics of meiotic chromosomes and telomeres.

We investigated the sequence of chromosomal events during meiotic prophase in haploid, diploid and autotetraploid SK1 strains of Saccharomyces cerevisiae. Using molecular cytology, we found that meiosis-specific nuclear topology (i.e. dissolution of centromere clustering, bouquet formation and meiotic divisions) are significantly delayed in polyploid SK1 meiosis. Thus, and in contrast to the si...

متن کامل

Meiotic telomere clustering requires actin for its formation and cohesin for its resolution

In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency fo...

متن کامل

Fission yeast mutants affecting telomere clustering and meiosis-specific spindle pole body integrity.

In meiotic prophase of many eukaryotic organisms, telomeres attach to the nuclear envelope and form a polarized configuration called the bouquet. Bouquet formation is hypothesized to facilitate homologous chromosome pairing. In fission yeast, bouquet formation and telomere clustering occurs in karyogamy and persists throughout the horsetail stage. Here we report the isolation and characterizati...

متن کامل

Set1- and Clb5-deficiencies disclose the differential regulation of centromere and telomere dynamics in Saccharomyces cerevisiae meiosis.

The entry into meiosis is characterized by a lengthy premeiotic S phase and a reorganization of the nuclear architecture. Analysis of centromere and telomere dynamics in wild-type Saccharomyces cerevisiae meiosis suggests that resolution of vegetative centromere and telomere clusters are independent events differently connected to premeiotic S phase. Absence of the B-type cyclin Clb5 or the Set...

متن کامل

Jcb_201409058 1..14

Telomeres maintain the integrity of linear chromosomes by preventing the unsolicited recruitment of DNA repair machineries to chromosome ends (de Lange, 2009; Dehé and Cooper, 2010; Jain and Cooper, 2010) and engaging telomerase to solve the end replication problem (Greider and Blackburn, 1985; Artandi and Cooper, 2009). At a distinct site on the chromosome, centromeres mediate the attachment o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016